Домой Бизнес-планы Классификация сталей по химическому составу и назначению. Расшифровка маркировок сталей, правила обозначения

Классификация сталей по химическому составу и назначению. Расшифровка маркировок сталей, правила обозначения

МАТЕРИАЛОВЕДЕНИЕ. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

УЧЕБНО - МЕТОДИЧЕСКОЕ ПОСОБИЕ

по выполнению практических работ

для студентов направления 130400 «Горное дело»

заочной формы обучения

Магнитогорск


Составители:

Е.П. Кашапова

Учебно-методическое пособие для выполнения практических работ по курсу "Материаловедение и технология конструкционных материалов" для студентов направления 130400 «Горное дело». Магнитогорск: МГТУ, 2016. 36 с.

Рецензент: Орехова Н.Н.

ã Кашапова Е.П.

Магнитогорский государственный

технический университет

им. Г.И. Носова, 2016


МАРКИРОВКА СТАЛЕЙ

Термины и определения

Сталь - деформируемый (ковкий) сплав железа с углеродом при содержании углерода от 0,02 до 2,14 %.

Стали кипящие - стали, раскисленные в процессе кристаллизации (в слитке) марганцем и почти не содержащие кремния (менее 0,05 %).

Стали полуспокойные - стали, раскисленные в ходе плавки марганцем и в конце плавки алюминием.

Стали спокойные - стали, раскисленные в ходе плавки марганцем, кремнием и алюминием. По качеству выше кипящей и полуспокойной.

Стали быстрорежущие - высоколегированные инструменталь­ные стали, содержащие вольфрам, молибден, ванадий, хром, обладающие высокой теплостойкостью и твердостью.

Стали жаропрочные - легированные стали, способные работать под нагрузкой при температурах выше 450 °С в течение определенного времени. Критерием жаропрочности является предел ползучести.

Стали жаростойкие (окалиностойкие) - стали, обладающие стойкостью против химического разрушения поверхности (образо­вания окалины) во время работы при повышенных температурах в ненагруженном или слабонагруженном состоянии.

Стали инструментальные - стали, предназначенные для изготовления режущего и штампового инструмента. Их делят на углеродистые (У7, У12) и легированные.

Стали коррозионно-стойкие (нержавеющие) - устойчивые против химической и электрохимической коррозии стали, содержащие от 13 % хрома и других легирующих элементов.



Стали теплоустойчивые - стали, способные противостоять циклическому температурному воздействию без разрушения.

Стали легированные - стали, в состав которых вводят легирующие элементы (никель, хром, кремний, марганец, вольфрам, молибден, титан, бор и др.) с целью получения определенных свойств.

Цель практической работы - изучить принципы обозначения марок сталей и сплавов на основе железа и научиться читать маркировку.

Стали применяют для изготовления деталей машин и механизмов, инструментов, оснастки и оборудования, необходимых для технологического процесса их производства.

Единой мировой системы маркировки сталей не существует. В США применяется сразу несколько систем AISI, ASTM, UNS. В Европе используют DIN, ECISS, EN. В России и других странах СНГ применяют самую совершенную систему обозначения марок стали, разработанную в СССР.

Маркировка стали зависит от её металлургического качества, назначения и химического состава.

Металлургическое качество стали зависит от её чистоты по вредным примесям (сере S и фосфору P) и неметаллическим включениям.

Классификация углеродистых сталей

Углеродистые стали классифицируются по содержанию углерода, структуре в равновесном состоянии, способу производства, степени раскисления и характеру затвердевания, качеству и назначению.

· низкоуглеродистые (<0,25% C);

· среднеуглеродистые (0,25-0,6% C);

· высокоуглеродистые (>0,6%C).

По структуре в равновесном состоянии:

· доэвтектоидные – структура феррит и перлит;

· эвтектоидные – структура перлит;

· заэвтектоидные – структура перлит и цементит вторичный.

По способу производства:

· мартеновские;

· конвертерные;

· электростали.

По степени раскисления и характеру затвердевания:

· спокойные;

· полуспокойные;

· кипящие.

Раскисление – процесс удаления из жидкого металла кислорода с целью предотвращения хрупкого разрушения стали при горячей деформации.

Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения.

Кипящие стали раскисляют марганцем. Перед разливкой в них повышенное содержание кислорода, который при затвердевании частично взаимодействует с углеродом и удаляется в виде CO. Выделение пузырьков СО создает впечатление кипящей стали. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.

По качеству стали:

· обыкновенного качества (содержат до 0,055%S и 0,060% Р);

· качественные (не более 0,04%S и 0,035%P);

· высококачественные (не более 0,025%S и 0,025%P).

Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойств стали, а также ее технологические характеристики зависят от содержания газов (кислорода, водорода, азота) и вредных примесей − серы, фосфора. Газы являются скрытыми, трудно определяемыми примесями, поэтому количество вредных примесей служит основным показателем для разделения сталей по качеству.

По назначению :

· конструкционные;

· инструментальные;

· специальные.

Конструкционные стали − наиболее обширная группа. Предназначены для изготовления строительных сооружений, деталей машин и конструкций, к ним относятся: цементуемые, улучшаемые, высокопрочные, рессорно-пружинные.

Инструментальные стали − для режущих и измерительных инструментов, штампов холодного и горячего (до 200°С) деформирования.

Специальные стали предназначены для изготовления конкретного вида изделия.

2. Маркировка стали обыкновенного качества

Маркировка и общие требования стали обыкновенного качества регламентированы ГОСТ 380-94. Применяются стали для изготовления конструкционных деталей неответственного назначения (несущие конструкции, корпусные детали, панели).

В зависимости от назначения стали подразделяют на три группы:

А – поставляемую с гарантированными механическими свойствами;

Б – поставляемую с гарантированным химическим составом;

В – поставляемую с гарантированными механическими свойствами и химическим составом.

Стали выплавляются следующих марок:

группы А – Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6;

группы Б – БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6;

группы В – ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5, ВСт6.

Сочетанием букв Ст в марке обозначают «Сталь обыкновенного качества»; цифра после Ст - условный номер марки (от 0 до 6), в зависимости от химического состава стали; маленькие буквы в конце марки - степень раскисления («кп» - кипящая; «пс» - полуспокойная; «сп» - спокойная). Иногда перед индексом раскисления может стоять буква Г, означающая легирование стали марганцем до 1,5 % (другие легирующие добавки в сталях обыкновенного качества не используют). Стали группы Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Стали марок Ст0 и БСт0 по степени раскисления не разделяют. Категории нормируемых свойств (кроме категории 1) указывают цифрой после индекса раскисления.

Примеры . Ст2кп 2 – сталь обыкновенного качества (неверно говорить - обычного!) группы А (поставляется с гарантированными механическими свойствами), номер марки – 2, кипящая, второй категории;

БСт4сп3 – сталь обыкновенного качества группы Б (поставляется с гарантированным химическим составом), номер марки – 4, спокойная, третьей категории.

Стали группы А используют в состоянии поставки для изделий, изготовление которых не предполагает горячую обработку.. Химический состав этой группы сталей колеблется в широких пределах. Их применяют для изготовления металлоконструкций в строительстве.

Стали группы Б применяются для изделий, в технологии которых входит горячая обработка (ковка, сварка, термическая обработка). Исходная структура и механические свойства в этом случае не сохраняются.

Стали группы В применяются для ответственных деталей, сварных конструкций. Важно знать исходные механические свойства, так как они сохраняются на участках, не подвергаемых нагреву при сварке. Для оценки свариваемости важны сведения о химическом составе.

3. Маркировка качественной стали

Этот класс сталей отличается более высокой надёжностью, чем сталь обыкновенного качества, и в отличие от высококачественной имеет умеренную цену, поэтому получил наиболее широкое применение в машиностроении.

Качественную сталь маркируют содержанием углерода и легирующих элементов. Обычно в стандарте на качественную сталь приводят варианты рекомендуемых режимов её термической обработки и получаемые при этом механические свойства.

Качественная конструкционная сталь маркируется содержанием углерода, указанным в сотых долях весового процента (обычно указывают значение, соответствующее середине марочного интервала). Спокойные стали маркируют без индекса, полуспокойные и кипящие - с индексом «пс» и «кп» соответственно.

Примеры . Сталь 08кп - сталь качественная конструкционная с содержанием 0,08 % углерода, кипящая.

Сталь 80 - сталь качественная конструкционная с содержанием 0,80 % углерода.

Качественная инструментальная сталь маркируется содержанием углерода, указанным в десятых долях процента (обычно указывают значение, соответствующее середине марочного интервала). Углеродистая (нелегированная) инструментальная сталь дополнительно маркируется буквой У, которая ставится перед числом, обозначающим содержание углерода.

Примеры. Сталь У 8 - сталь качественная инструментальная с содержанием 0,8 % углерода, кипящая.

Сталь У13 - сталь качественная инструментальная с содержанием 1,3 % углерода.

Иногда трудно различить по назначению легированные стали со сходной маркой. Обычно предельное содержание углерода в инструментальных сталях не превышает 1,3 %. Такие высокоуглеродистые инструментальные стали обычно легируют только хромом.

Пример. Сталь 11Х, сталь 13Х - качественные инструментальные стали, легированные хромом до 1 % с содержанием углерода 1,1 и 1,3 %, соответственно.

В некоторых марках легированной инструментальной стали в начале марки может быть не указано содержание углерода. В этом случае содержание углерода до 1 %. Это ещё один признак инструментальной стали.

Пример. Сталь Х - сталь качественная инструментальная с содержанием до 1 % углерода, до 1 % хрома.

Содержание легирующих добавок в качественных легированных сталях (и конструкционных, и инструментальных) указывается русской прописной «звучащей» буквой, обозначающей элемент (табл. 1), и стоящим после буквы числом, указывающим содержание вещества в весовых процентах (обычно указывают значение, соответствующее середине марочного интервала). Если после буквы, обозначающей легирующий элемент, число не стоит - его содержание до 1 %.

Исключением являются подшипниковые стали типа ШХ15, в которых содержание хрома указано в десятых долях % (1,5 % Cr).

Таблица 1. Маркировка легированных сталей

А А А Б
(внутри марки) (в начале марки) (в конце марки) ниобий
азот автоматная высококачественная
В Г Д Е
вольфрам марганец медь селен
К Л М Н
кобальт (в конце марки) молибден никель
литейная
П Р Р С
ф(пх)осфор (внутри марки) (в начале марки) силиций
бор рапидная(вольфрам) (кремний)
Т У Ф Х
титан углеродистая в(ф)анадий хром
инструментальная
Ц Ч Ш Ю
цирконий ц(ч)ерий шарикоподшип- алюминий
никовая сталь

В зависимости от основных легирующих элементов стали делятся на группы:

– хромистая – 15Х, 15ХА, 30ХРА, 40Х, 45Х и др.;

– марганцовистая – 15Г, 15Г2, 10Г2, 45Г, 50Г2 и др.;

– хромомарганцовистая – 15ХГ, 18ХГТ, 20ХГМ, 25ХГМ, 35ХГФ и др.;

– хромоникелевая – 20ХН, 20ХНР, 20ХНЗА, 12ХНЗ, 45ХН и др.;

– хромокремистая – 33 ХС, 40ХС и др.;

– хромомолибденовая, хромованадиевая, хромоалюминиевая – 15ХМ, 4ХМФА, 30Х3МФ, 35ХФМА, 35ХМ10А и др.

Всего стандартизировано до 100 марок легированных сталей.

В зависимости от содержания вредных примесей (серы и фосфора) различают стали:

– качественные (12ХНЗ), S и P <0,35%;

– высококачественные (30ХГСА) – индекс А в конце марки, S и P <0,025%;

– особо высококачественные, в конце маркировки стали ставится буква Д – полученная электродуговым переплавом, в конце марки стали ставится буква Ш – полученная электрошлаковым способом (12Х18Н9Т-Д, ШХ15СГ-Ш).

Индекс Ч в конце марки стали указывает на то, что сталь легирована редкоземельными элементами (титан, ниобий, цирконий, кальций) – эти стали применяются в нефтегазовой промышленности.

Буква А в начале марки означает, что сталь автоматная, то есть повышенной обрабатываемости резанием на станках автоматах (ГОСТ 1414-75)- АС35Г2,АС30М.

Буква Л в конце марки обозначает, что сталь предназначена для изготовления деталей литьем (ГОСТ 977-88)- 30 ГСЛ.

Индекс Ш в начале марки стали – сталь шарикоподшипниковая (ШХ9) ГОСТ 801-78. Хром представлен в десятых долях процента – 0,9% Cr.

Цифры, стоящие перед маркировкой стали означают :

– две цифры – содержание углерода в сотых долях процента;

– одна цифра – содержание углерода в десятых долях процента;

– цифры отсутствуют – содержание углерода до одного процента.

Примеры. Сталь 10ХСНД - сталь качественная конструкционная с содержанием 0,10 % углерода, хрома, кремния, никеля, меди до 1 % каждого.

Сталь 18Г2АФ - сталь качественная конструкционная с содержанием 0,18 % углерода, марганца 2 %, азота, ванадия до 1 % каждого.

Сталь 9ХС - сталь качественная инструментальная с содержанием 0,9 % углерода, хрома и кремния до 1 % каждого.

Сталь ХГ2ВМ - сталь качественная инструментальная с содержанием до 1 % углерода, марганца 2 %, вольфрама и молибдена до 1 % каждого.

Для достижения жаропрочности стали легируют хромом, никелем и другими карбидообразующими элементами Mo, V, W, Nb, Si, Ti, Al. Стали 12Х1МФ, 12Х2МФСР сохраняют прочность до температуры 500С; сталь 40Х15Н7Г7Ф2МС;с карбидным упрочнением жаропрочна до 700С..

Стали для работы при низких температурах

Для крупных конструкций используются свариваемые низколегированные стали 9Г2С, 14Г2АФ. Для изделий, работающих при температуре до -50С - улучшаемые стали 40Х, 65Г, 60С2А.

Высокую хладостойкость имеют стали, легированные никелем: 03Х9К14Н6М3Т. Их используют в изделиях, работающих до температуры – 196С и относящихся к авиационной, ракетной и космической технике.

Износостойкие стали обладают высоким сопротивлением к силам трения в условиях действия больших контактных давлений и ударных нагрузок.. Это рабочие элементы дробилок, мельниц, насосов, смесителей.

Сталь 110Г13Л с плохой обрабатываемостью резанием предусматривает получение деталей литьем, для тяжелых условий абразивно-ударного изнашивания, крестовин железнодорожных стрелок, щек дробилок, траков гусеничных машин, ножей отвалов бульдозера, черпалок землеройных м-шин.

Стали марок 08Х18Н9Т, 30Х10Г10, 08Х14Г12, 08Х14АГ12М применяются для деталей гидротурбин и гидронасосов, работающих в условиях эрозийного износа.

Для изготовления подшипников качения разработана группа специальных шарикоподшипниковых сталей , которые обозначают буквой Ш в начале марки. Высокие требования к чистоте по вредным примесям в этих сталях относят их к категории высококачественных. В таких сталях содержание хрома указано в марке в десятых долях процента (сталь ШХ4, ШХ15, ШХ20СГ).

Пружинно – рессорные стали общего назначения применяются для изготовления силовых, жестких, упругих элементов, которые должны иметь минимальную упругую деформацию.

Стали 50ХГ, 55ХГР, 55С2, 60С2, 60СГА применяют для изготовления рессор автомобилей, пружин железнодорожного транспорта.

Сталь 50ХФА – пружины ответственного назначения.

Сталь 55ХГСФ – пружины станков и прессов.

Стали 60С2ХФА, 65С2ВА – пружины станков и прессов, работающих до температуры 250С.

45ХНМФА – клеммовые пружины и торсионные валы.

При высокоскоростном резании металлов широко применяют так называемые быстрорежущие (рапидные) стали. Они маркируются буквой Р в начале марки. Число, стоящее после этой буквы, обозначает содержание вольфрама в процентах. Обычно кроме вольфрама эти стали легированы 4 % хрома и 1 % ванадия (старое название - сталь 18-4-1), но указывать их в характеристике стали не надо.

Пример. Сталь Р18 - высококачественная быстрорежущая инструментальная сталь; содержание углерода до 1 %, 18 % вольфрама.

Сплавы высокой стойкости против коррозии:

08Х22Н6Т – камеры сгорания и другие конструктивные элементы газовых турбин, сварных корпусов, днищ, фланцев, деталей внутренних устройств аппаратов, турбинных дисков, работающих при температурах от -10 до +300С, под давлением и в агрессивной среде;

06ХН28МДТ, 03ХН28МДТ – сварные конструкции, работающие при температурах до +80С в серной кислоте различных концентраций;

Н70М20 – сварные конструкции, работающие в среде соляной и фосфорной кислот, а также в серной кислоте с концентрацией до 60%.

4. Маркировка высококачественной стали

Стали этого класса обладают большой надёжностью, сочетанием высокой прочности и стойкости против хрупкого разрушения, комплексом специальных свойств. Это достигается жёстким контролем чистоты материала по вредным примесям и введением большого количества легирующих добавок. Они применяются для изготовления ответственных деталей, работающих в жестких условиях эксплуатации.

Маркировка высококачественных сталей похожа на качественные.

На высокое качество стали указывает буква А в конце марки или высокое суммарное содержание легирующих элементов (более 8-10 %). Высоколегированная сталь - высококачественная.

Примечание: если в марке стали очень много букв, обозначающих легирующие элементы, содержание которых до 1 %, - это качественная сталь (экономно легированная сталь 12ГН2МФАЮ).

Примеры. Сталь 90Х4М4Ф2В6Л - сталь высококачественная конструкционная с содержанием 0,90 % углерода, 4 % хрома, 4 % молибдена, 2 % ванадия, 6 % вольфрама, литейная.

Сталь 18Х2Н4ВА - сталь высококачественная конструкционная с содержанием 0,18 % углерода, хрома 2 %, никеля 4 %, вольфрама до 1 %.

Сталь Р18К5Ф2 - сталь высококачественная быстрорежущая инструментальная с содержанием углерода до 1 %, 18 % вольфрама, 5 % кобальта, 2 % ванадия.

Сталь 9Х18 - сталь высококачественная инструментальная с содержанием 0,9 % углерода, 18 % хрома.

5. Маркировка особо высококачественной стали

Для получения самого высокого комплекса различных свойств сталь выплавляют из чистых шихтовых материалов в вакуумно-индукционной печи (ВИП или ВИ). Другой способ - дополнительная очистка для максимального удаления вредных примесей - переплав. Существуют различные методы рафинирования стали: обработка расплавленной стали синтетическим шлаком (СШ), вакуумно-дуговой переплав (ВДП или ВД), электрошлаковый переплав (ЭШП или Ш) или их сочетание (ШД), электронно-лучевой переплав (ЭЛП) и плазменно-дуговой переплав (ПДП).

В марке особо высококачественной стали после обозначения химического состава через тире указывают тип выплавки или переплава.

Примеры. Сталь 01Х25-ВИ - сталь особо высококачественная с содержанием 0,01 % углерода, 25 % хрома, вакуумно- индукционной выплавки. Сталь ШХ15-ШД - сталь особо высококачественная подшипниковая с содержанием углерода до 1 %, хрома 1,5 % после электрошлакового переплава с последующим вакуумно-дуговым переплавом.

6. Маркировка специальных сталей

6.1 Автоматные стали

Автоматная сталь (ГОСТ 1414-75) предназначена для изготовления мелких винтов, гаек, шпилек и других конструкционных деталей неответственного назначения или работающих без ударных нагрузок. Автоматные стали хорошо обрабатываются на металлорежущих станках – автоматах за счет повышенного содержания серы и фосфора.

Добавление в автоматные стали свинца, селена, теллура позволяет в 2-3 раза сократить расход режущего инструмента, а производительность обработки повышается на 30%. Улучшение обрабатываемости достигается модифицированием кальцием, который скругляет сульфидные включения, что положительно влияет на обрабатываемость.

Марки автоматных сталей обозначают буквой А и цифрами, указывающими среднее содержание углерода в сотых долях процента, легирующие элементы обозначают буквами: Г-марганец, Е-селен, или теллур, С-свинец,Ц-кальций.

Для автоматной стали металлургическое качество не указывают!

Примеры. Сталь А11 - сталь автоматная с содержанием 0,11 % углерода. Сталь АСЦ30ХМ - сталь автоматная, легированная свинцом и кальцием с содержанием 0,30 % углерода, хрома и молибдена до 1 % каждого.

Литейные стали

Литейные стали выплавляются в соответствии с ГОСТ 977-88. Маркируются они так же, как и качественные конструкционные стали, но с добавлением буквы Л в конце марки. Они содержат до 0,9%Mn, до 0,52%Si и не более 0,06%S и 0,08%P.

Пример Сталь 15Л – сталь литейная с содержанием углерода 0,15%.

Низкоуглеродистые литейные стали применяют для изготовления деталей, подвергающихся ударным нагрузкам – арматуры, деталей сварно-литых конструкций. Среднеуглеродистые стали используют для отливки станин и валков прокатных станов, крупных шестерен.

Арматурные стали

Для армирования железобетонных конструкций применяют прутки (гладкие и периодического профиля) и проволоку. В предварительно напряженной железобетонной конструкции, то есть когда бетон сжат вложенными в конструкцию стальными стержнями, металл испытывает значительные напряжения. В таких конструкциях применяют высокопрочные стальные стержни или проволоку

Арматурная сталь делится на классы по прочности в соответствии с ГОСТ 5781-82. Маркируется арматурная сталь буквой А, за которой следует римская цифра, показывающая класс по прочности (от А-I до A-VIII).

Пример сталь А-III – сталь арматурная, III класс по прочности.

Арматурную сталь классов А-I, А-II, А-III применяют для ненапряжен-ных конструкций, а сталь более высоких классов - для предварительно напряженных конструкций. Свойства, соответствующие классам А-IV ,А-V , могут быть получены в углеродистых сталях марок Ст5, Ст6 после упрочняющей термической обработки (закалка в воде и отпуск при 400°С). Арматура более высоких классов (А-VI - A-VIII) изготовляется с применением упрочняющей термической обработки.

Котельные стали

Сталь для изготовления деталей котлостроения должна выдерживать температуры до 450°С и значительное давление. Котельные стали поставляются в соответствии с ГОСТ 5520-79 в виде толстых листов. Они маркируются сочетанием цифр, указывающих содержание углерода в сотых долях процента и буквой К, следующей за цифрами.

Пример Сталь 15К – сталь котельная с содержанием углерода в среднем 0,15%.

Котельные стали марок 12К, 16К, 18К используются для изготовления деталей, частей котлов и сосудов, работающих под давлением при комнатной, повышенных и криогенных температурах.

Стали марок 15К, 20К, 22К идут на изготовление днищ, фланцев цельнокованных, сварных барабанов паровых котлов, полумуфт, патрубков и других деталей, работающих при температурах от -40 до +450°С под давлением.

Мостовые стали

Мостовая сталь предназначена для изготовления пролетных строений мостовых конструкций. Поставляется листовая, широкополосная, фасонная и сортовая. В мостостроении допускается использовать только спокойную сталь.

Сталь выплавляется двух марок:

– М16С – для сварных мостовых конструкций. В маркировке буква М показывает, что сталь мостовая, цифра показывает среднее содержание углерода в сотых долях процента, буква С, что сталь подвергается сварке.

– Ст3 мост. – для клепаных конструкций. Цифра в марке означает номер группы механических свойств стали.

Сталь М16С дополнительно раскисляется алюминием, а содержание в ней хрома, никеля и меди не должно превышать 0,3% каждого. Сталь испытывается на изгиб на 180° в холодном состоянии и на ударную вязкость при температуре +20° и -20°С. Сталь М16С, идущая на изготовление ответственных сварных кон-струкций, оценивается на чувствительность к старению. Предъявляются высокие требования к качеству проката. На кромках листов и полос не должно быть расслоений, а заварка и заделка дефектов не допускаются.

Рельсовая сталь

Материалом для рельсов служит специальная рельсовая сталь. Рельсы изготавливают двух групп:

1-я группа – из спокойной мартеновской стали, раскисленной в ковше комплексными раскислителями без применения алюминия или других раскислителей;

2-я группа – из спокойной мартеновской стали, раскисленной алюминием или марганцем.

Рельсовые стали маркируются буквой М, которая указывает мартеновский способ выплавки, за которой следует цифра, указывающая содержание углерода в сотых долях процента. Буквы В, Т, Ц указывают повышенное содержание ванадия, титана, цирко-ния. Массовая доля ванадия в рельсовой стали колеблется от 0,01 до 0,07 %, титана от 0,005-0,02, циркония 0,001-0,050%.

Пример : М76ВТ– сталь рельсовая, мартеновского способа выплавки, с содержанием 0,76 % углерода, повышенным содержанием ванадия и титана.

Сталь марок М76, М76Т, М76ВТ, М76Ц, М74Т, М74Ц выпускают для изготовления первой группы рельсов типа Р75, Р65, Р50; для второй группы рельсов используют стали марок М76, М74.

Условия эксплуатации рельсов на дорогах Сибири вдвое тяжелее, чем в европейской части России. Созданы рельсы низкотемпературной надежности Р65, объемно-закаленные 1-й группы, выплавляемые из ванадий - ниобий - борсодержащей стали. Для этих рельсов используется электросталь, выплавка которой производится в дуговых печах. При температуре -60°С рельсы из электростали

выдерживают ударные нагрузки вдвое больше, чем рельсы из

мартеновской стали.


Примерное назначение сталей

Таблица 2. Примерное назначение конструкционных сталей

Марка Назначение
Ст1, Ст2 Неответственные корпусные детали (получаемые глубокой вытяжкой или сваркой)
Ст3пс, Ст3кп Гнутые профили с толщиной листа 1.9 мм, уголки
Ст5пс, Ст5сп Болты, гайки, ручки, штыри, тяги и др.
08кп, 10 Детали, изготовляемые холодной штамповкой и холодной высадкой (сложные корпуса, несущие конструкции)
30, 35 Детали, испытывающие небольшие напряжения (оси, шпиндели, звёздочки, диски, валы)
40, 45 Детали, от которых требуется повышенная прочность (коленчатые и распредвалы, шатуны, зубчатые венцы)
50, 55 Зубчатые колёса, прокатные валки, штоки, валы, эксцентрики, малонагруженные пружины и рессоры
60, 70, 80 Детали с высокими прочностными и упругими свойствами (шпиндели, пружинные кольца)
10ХСНД, 09Г2СЮч Для деталей ответственных сварных конструкций повышенной прочности
09Г2, 09Г2С Для деталей сварных конструкций
15Х, 15ХФ Хорошо цементуется. Валы распределительные, толкатели, мелкие детали, работающие в условиях износа при трении
18ХГТ, 20ХГР Для цементуемых деталей, работающих на больших скоростях при высоких давлениях и ударных нагрузках (зубчатые колёса, шпиндели, кулачковые муфты, втулки и др.)
40Х, 45Х, 50Х Улучшаемая сталь. Для деталей, работающих на средних скоростях и давлениях (зубчатые колёса, шпиндели в подшипниках качения, червячные валы)
45ХН, 50ХН Аналогично применению стали 40Х, но для деталей больших размеров

Продолжение таблицы 2

Таблица 3. Примерное назначение инструментальных сталей

Марка Назначение
У7, У7А Для слесарно-монтажных инструментов - молотков, кувалд, бородок, отвёрток, плоскогубцев, острогубцев, боковых кусачек и др.
У8, У8А, У8Г, У8ГА, У9, У9А Для изготовления инструментов, работающих без разогрева режущей кромки. Для калибров простой формы и пониженных классов точности. Для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, мелких конструкционных деталей, в том числе для часов
У10, У10А, У11, У11 А Для штампов холодной штамповки небольших размеров и без резких переходов по сечению. Для калибров простой формы и пониженных классов точности. Для накатных роликов, напильников, шаберов слесарных и др.
У13, У13А Для инструментов с пониженной износостойкостью при умеренных и значительных удельных давлениях (без разогрева режущей кромки); напильников, бритвенных лезвий и ножей, острых хирургических инструментов, шаберов, гравировальных инструментов
Х, 9Х18 Измерительные инструменты
ХВГ, Х12М, Х12Ф1 Штампы для холодной штамповки, валки для накатки резьбы

Продолжение таблицы 3

Таблица 4. Назначение коррозионностойких сталей и сплавов

Марка Назначение
20Х13, 08Х13, 25Х13Н2 Для деталей с повышенной пластичностью, подвергающихся ударным нагрузкам и работающих в слабоагрессивных средах. Мартенситная сталь
14X17H2, 12Х13 Для различных деталей химической и авиационной промышленности. Феррито-мартенситная сталь
95Х18 Для деталей высокой твёрдости, работающих в условиях износа. Мартенситная сталь
09Х15Н8Ю, 07X16H6 Для высокопрочных изделий, упругих элементов
08X10H20T2 Немагнитная сталь для деталей, работающих в морской воде, аустенитная немагнитная
03Х13АГ19 Для деталей, работающих в слабоагрессивных средах, а также при температурах до -196 °С
12Х18Н10Т, 03Х18Н12 Для сварных конструкций в разных отраслях промышленности, аустенитная немагнитная
15Х18Н12С4Ю Для сварных изделий, работающих в воздушной и агрессивной средах, в концентрированной азотной кислоте

Дать характеристику стали (варианты заданий в табл. 5), указать:

· металлургическое качество стали;

  • назначение стали;

· химический состав стали по марке.

Примерное назначение различных марок сталей представлено в табл. 2 - 4.

Практическое задание следует представить в виде таблицы 6

Таблица 5 Варианты заданий

Вариант 1 Вариант 2 Вариант 3 Вариант 4
Ст3Гпс Ст3кп Ст2кп Ст6сп
20ХР 50Г2 38ХМЮА 40ХФА
12ХГНФАЮ 15Г2СФ 16Г2АФпс 12Г2СМФ
2Х13В8К10 5ХНМ 2Х12В3МФ 6ХНФ
Р6М5 Р12 Р7Т Р9
14Х17Н2 07Х13АГ20 08Х21Н6М2Т 09Х15Н8Ю
М76 М16С 20К А-II
А40Г 15К Ст3мост 15Л
12К М76ВТ А-I М74
Вариант 5 Вариант 6 Вариант 7 Вариант 8
Ст1 сп Ст6пс Ст5сп Ст4пс
50ХГ 20ХГР 50ХГА 45ХН
15ХГ2СФР 14ХГНСФР 12ХГ2СМФ 12ХГНФАЮ
9ХФ 8Х4В4Ф 4Х5В4ФСМ 2Х12В7К5
Р6М3 Р9М4 Р12М3 Р18Ф2
14Х18Н4Г4Л 12Х18Н12БЛ 31Х19Н9МВБТ 15Х23Н18Л
А-III У9А М74Ц БСт5 пс
М76Т А-IV , 40Г М76Т
АС35Е А20 У13 А-V
Вариант 9 Вариант 10 Вариант 11 Вариант 12
Ст1 сп Ст4пс Ст5Гпс Ст6пс
60C2XA 40ХН3А 18ХГТ 40ХС
15ГСМХР 14Х2ГМР 14ГНФБАЮ 09Г2СЮЧ
ХГ3М У11А 4ХНМ 4Х13
Р14Ф4 Р9Ф5 Р6М5Ф3 Р5М4Ф4
12Х18Н12М3Т 12Х25Н5ТМФЛ 120Г10ФЛ 20Х21Н46В8РЛ
М74Ц М16С 50Л А20
А11 А-VI АС14 Ст3мост
15Л 22К 18К A-VIII
Вариант 13 Вариант 14 Вариант 15 Вариант 16
Ст2сп Ст3пс Ст4пс Ст3сп
50ХН 50ХФА
10ХСНД 15ХСНД 15ГФ 09Г2С
Х6ВФ 9Г2Ф ХВГ ХВСГ
Р18Ф3 Р14Ф4 Р9Ф5 Р12Ф3
10Х18Н11БЛ 110Г13ФТЛ 110Г13Х2БРЛ 15Х18Н22В6М2 Р
А30 А-II У8 16К
22К У7А А-I ВСт2пс
15Л А30 50Л У13А
Вариант 17 Вариант 18 Вариант 19 Вариант 20
Ст5пс Ст3кп Ст3Гсп Ст6пс
60C2H2A 70С2ХА 70СЗА 65ГС
15Г2АФДпс 12ГН2МФАЮ 12Г2АМФ 15ХСНД
У10А Х12Ф1 6Х2С 9ХВФ
Р9К10 Р18К5Ф2 Р10К5Ф5 Р12Ф4К5
10Х18Н9Л 10Х18Н3Г3Д2Л 130Г14ХМФАЛ 15Х18Н22В6М2
БСт4сп3 А-IV ВСт3Гсп2 20К
22К 15К У10 A-VIII
40Г М76Т М74Ц М16С

Таблица 6 Расшифровка марок сплавов

Пример заполнения таблицы 6

Разобраться в таком вопросе, как классификация углеродистых сталей, очень важно, так как это позволяет получить полное представление о характеристиках той или иной разновидности этого популярного материала. , как и любых других, не менее важна, и специалист должен уметь разбираться в ней, чтобы правильно выбрать сплав в соответствии с его свойствами и химическим составом.

Отличительные характеристики и основные категории

К углеродистым сталям, основу которых составляют железо и углерод, относят сплавы, содержащие минимум дополнительных примесей. Количественное содержание углерода является основанием для следующей классификации сталей:

  • низкоуглеродистые (содержание углерода в пределах 0,2%);
  • среднеуглеродистые (0,2–0,6%);
  • высокоуглеродистые (до 2%).

Кроме достойных технических характеристик, следует отметить доступную стоимость , что немаловажно для материала, широко применяемого для производства самых разнообразных изделий.

К наиболее значимым достоинствам углеродистых сталей различных марок можно отнести:

  • высокую пластичность;
  • хорошую обрабатываемость (вне зависимости от температуры нагрева металла);
  • отличную свариваемость;
  • сохранение высокой прочности даже при значительном нагреве (до 400°);
  • хорошую переносимость динамических нагрузок.

Есть у углеродистых сталей и недостатки, среди которых стоит выделить:

  • снижение пластичности сплава при увеличении в его составе содержания углерода;
  • ухудшение режущей способности и снижение твердости при нагреве до температур, превышающих 200°;
  • высокую склонность к образованию и развитию коррозионных процессов, что налагает дополнительные требования к изделиям из такой стали, на которые должно быть нанесено защитное покрытие;
  • слабые электротехнические характеристики;
  • склонность к тепловому расширению.

Отдельного внимания заслуживает классификация углеродистых сплавов по структуре. Основное влияние на превращения в них оказывает количественное содержание углерода. Так, стали, относящиеся к категории доэвтектоидных, имеют структуру, основу которой составляют зерна феррита и перлита. Содержание углерода в таких сплавах не превышает 0,8%. С увеличением количества углерода уменьшается количество феррита, а объем перлита, соответственно, увеличивается. Стали, в составе которых содержится 0,8% углерода, по данной классификации относят к эвтектоидным, основу их структуры преимущественно составляет перлит. При дальнейшем увеличении количества углерода начинает формироваться вторичный цементит. Стали с такой структурой относятся к заэвтектоидной группе.

Увеличение в составе стали количества углерода до 1% приводит к тому, что такие свойства металла, как прочность и твердость, значительно улучшаются, а предел текучести и пластичность, напротив, ухудшаются. Если количество углерода в стали будет превышать 1%, это может привести к тому, что в ее структуре будет формироваться грубая сетка из вторичного мартенсита, что самым негативным образом сказывается на прочности материала. Именно поэтому в сталях, относящихся к категории высокоуглеродистых, количество углерода, как правило, не превышает 1,3%.

На свойства углеродистых сталей серьезное влияние оказывают и примеси, содержащиеся в их составе. Элементами, которые положительно воздействуют на характеристики сплава (улучшают раскисление металла), являются кремний и марганец, а фосфор и сера – это примеси, ухудшающие его свойства. Фосфор при повышенном содержании в составе углеродистой стали приводит к тому, что изделия из нее покрываются трещинами и даже ломаются при воздействии низких температур. Такое явление носит название хладноломкости. Что характерно, стали с повышенным содержанием фосфора, если они находятся в нагретом состоянии, хорошо поддаются сварке и обработке при помощи ковки, штамповки и др.

В изделиях из тех углеродистых сталей, в составе которых в значительном количестве содержится сера, может возникать такое явление, как красноломкость. Суть этого феномена заключается в том, что металл при воздействии высокой температуры начинает плохо поддаваться обработке. Структура углеродистых сталей, в составе которых содержится значительное количество серы, представляет собой зерна с легкоплавкими образованиями на границах. Такие образования при повышении температуры начинают плавиться, что приводит к нарушению связи между зернами и, как следствие, к образованию многочисленных трещин в структуре металла. Между тем параметры сернистых углеродистых сплавов можно улучшить, если выполнить их микролегирование при помощи циркония, титана и бора.

Технологии производства

На сегодняшний день в металлургической промышленности используются три основных технологии . Их основные отличия состоят в типе используемого оборудования. Это:

  • плавильные печи конвертерного типа;
  • мартеновские установки;
  • плавильные печи, работающие на электричестве.

В конвертерных установках расплавке подвергаются все составляющие стального сплава: чугун и стальной лом. Кроме того, расплавленный металл в таких печах дополнительно обрабатывается при помощи технического кислорода. В тех случаях, когда примеси, присутствующие в расплавленном металле, необходимо перевести в шлак, в него добавляют обожженную известь.

Процесс получения углеродистой стали по данной технологии сопровождается активным окислением металла и его угаром, величина которого может доходить до 9% от общего объема сплава. К недостатку данного технологического процесса следует отнести и то, что он проходит с образованием значительного количества пыли, а это вызывает необходимость использования специальных пылеочистительных установок. Применение таких дополнительных устройств сказывается на себестоимости получаемой продукции. Однако все недостатки, которыми характеризуется этот технологический процесс, в полной мере компенсируются его высокой производительностью.

Выплавка в мартеновской печи – еще одна популярная технология, которую применяют для получения углеродистых сталей различных марок. В ту часть мартеновской печи, которая называется плавильной камерой, загружается все необходимое сырье (стальной лом, чугун и др.), которое подвергается нагреванию до температуры плавления. В камере происходят сложные физико-химические взаимодействия, в которых принимают участие расплавленные металл, шлак и газовая среда. В результате получается сплав с требуемыми характеристиками, который в жидком состоянии выводится через специальное отверстие в задней стенке печи.

Сталь, получаемая при выплавке в электрических печах, за счет использования принципиально другого источника нагревания не подвергается воздействию окислительной среды, что позволяет сделать ее более чистой. В различных марках углеродистой стали, полученной при выплавке в электрических печах, присутствует меньшее количество водорода. Этот элемент является основной причиной появления в структуре сплавов флокенов, значительно ухудшающих их характеристики.

Каким бы способом ни выплавлялся углеродистый сплав и к какой бы категории в классификации он ни относился, основным сырьем для его производства являются чугун и металлический лом.

Способы улучшения прочностных характеристик

Если свойства марок улучшают посредством ввода в их состав специальных добавок, то решение такой задачи по отношению к углеродистым сплавам осуществляется за счет выполнения термообработки. Одним из передовых методов последней является поверхностная плазменная закалка. В результате использования этой технологии в поверхностном слое металла формируется структура, состоящая из мартенсита, твердость которого составляет 9,5 ГПа (на некоторых участках она доходит до 11,5 ГПа).

Поверхностная плазменная закалка также приводит к тому, что в структуре металла формируется метастабильный остаточный аустенит, количество которого возрастает, если в составе стали увеличивается процентное содержание углерода. Данное структурное образование, которое может преобразоваться в мартенсит при выполнении обкатки изделия из углеродистой стали, значительно улучшает такую характеристику металла, как износостойкость.

Одним из эффективных способов, позволяющих значительно улучшить характеристики углеродистой стали, является химико-термическая обработка. Суть данной технологии заключается в том, что стальной сплав, нагретый до определенной температуры, подвергают химическому воздействию, что и позволяет значительно улучшить его характеристики. После такой обработки, которой могут быть подвергнуты углеродистые стали различных марок, повышаются твердость и износостойкость металла, а также улучшается его коррозионная устойчивость по отношению к влажным и кислым средам.

Другие параметры классификации

Еще одним параметром, по которому классифицируют углеродистые сплавы, является степень их очищения от вредных примесей. Лучшими механическими характеристиками (но и более высокой стоимостью) отличаются стали, в составе которых присутствует минимальное количество серы и фосфора. Данный параметр стал основанием для классификации углеродистых сталей, в соответствии с которой выделяют сплавы:

  • обыкновенного качества (В);
  • качественные (Б);
  • повышенного качества (А).

Стали первой категории (их химический состав не уточняется производителем) выбирают, основываясь только на их механических характеристиках. Такие стали отличаются минимальной стоимостью. Их не подвергают ни термообработке, ни обработке давлением. Для качественных сталей производитель оговаривает химический состав, а для сплавов повышенного качества – и механические свойства. Что важно, изделия из сплавов первых двух категорий (Б и В) можно подвергать термообработке и горячей пластической деформации.

Существует классификация углеродистых сплавов и по их основному назначению. Так, различают конструкционные стали, из которых производят детали различного назначения, и инструментальные, используемые в полном соответствии с их названием – для изготовления различного инструмента. Инструментальные сплавы, если сравнивать их с конструкционными, отличаются повышенной твердостью и прочностью.

В маркировке углеродистой стали можно встретить обозначения «сп», «пс» и «кп», которые указывают на степень ее раскисления. Это еще один параметр классификации таких сплавов.
Буквами «сп» в маркировке обозначаются спокойные сплавы, в составе которых может содержаться до 0,12% кремния. Они характеризуются хорошей ударной вязкостью даже при низких температурах и отличаются высокой однородностью структуры и химического состава. Есть у таких углеродистых сталей и минусы, наиболее значимые из которых заключаются в том, что поверхность изделий из них менее качественная, чем у кипящих сталей, а после выполнения сварочных работ характеристики деталей из них значительно ухудшаются.

Полуспокойные сплавы (обозначаются буквами «пс» в маркировке), в которых кремний может содержаться в пределах 0,07–0,12%, характеризуются равномерным распределением примесей в своем составе. Этим обеспечивается постоянство характеристик изделий из них.

В кипящих углеродистых сталях, содержащих не более 0,07% кремния, процесс раскисления полностью не завершен, что становится причиной неоднородности их структуры. Между тем их выделяет ряд достоинств, к наиболее значимым из которых следует отнести:

  • невысокую стоимость, что объясняется незначительным содержанием специальных добавок;
  • высокую пластичность;
  • хорошую свариваемость и обрабатываемость при помощи методов пластической деформации.

Как маркируются углеродистые стальные сплавы

Разобраться в принципах маркировки углеродистой стали так же несложно, как и в основаниях ее классификации: они мало чем отличаются от правил обозначения стальных сплавов других категорий. Для того чтобы расшифровать такую маркировку, не нужно даже заглядывать в специальные таблицы.

Буква «У», стоящая в самом начале обозначения марки сплава, указывает на то, что он относится к категории инструментальных. О том, в какую качественную группу входит углеродистая сталь, говорят буквы «А», «Б» и «В», проставляемые в самом конце маркировки. Количество углерода, содержащееся в сплаве, проставляется в самом начале его маркировки. При этом для сталей, обладающих повышенным качеством (группа «А»), количество данного элемента будет указано в сотых долях процента, а для сплавов групп «Б» и «В» – в десятых.

В маркировке отдельных углеродистых сталей можно встретить букву «Г», стоящую после цифр, указывающих на количественное содержание углерода. Такая буква свидетельствует о том, что в металле содержится повышенное количество такого элемента, как марганец. На то, какой степени раскисления соответствует углеродистая сталь, указывают обозначения «сп», «пс» и «кп».

Углеродистые сплавы благодаря своим характеристикам и невысокой стоимости активно используются для производства элементов строительных конструкций, деталей машин, инструментов и металлических изделий различного назначения.

2 , средняя оценка: 5,00 из 5)

По химическому составу различают углеродистые и легированные стали.

Легированные стали - это стали в состав которых помимо углерода и примесей целенаправленно вводят один или несколько легирующих элементов для обеспечения требуемой прочности, пластичности, вязкости и др. технологических и эксплутационных свойств. Легирование производится с целью изменения механических свойств (прочности, пластичности, вязкости), физических свойств (электропроводности, магнитных характеристик, радиационной стойкости) и химических свойств (коррозионной стойкости).

Легирующий элемент это элемент, специально вводимый в сталь для изменения ее строения и свойств. Концентрация легирующих элементов может быть различной, в т.ч. и очень малой. Когда концентрация элемента составляет менее 0,1% легирование стали принято называть микролегированием.

Основные легирующие элементы - это хром (Cr), никель(Ni), марганец (Mn), кремний (Si), молибден (Mo), ванадий (V), бор (B), вольфрам (W), титан (Ti), алюминий (Al), медь (Cu), ниобий (Nb), кобальт (Co).

Углеродистые стали - это сплавы железа с углеродом, содержащие до 2,14 % углерода (С) при малом содержании других элементов. Они обладают высокой пластичностью и хорошо деформируются. Углерод сильно влияет на свойства стали даже при незначительном изменении его содержания. Углеродистые стали можно классифицировать по нескольким параметрам: по содержанию углерода, назначению, качеству, степени раскисления и структуре в равновесном состоянии.

По качеству стали подразделяются на стали обыкновенного качества и качественные углеродистые стали В зависимости от назначения различают три группы сталей обыкновенного качества: А, Б и В.

Группа А поставляется только по механическим свойствам, химический состав сталей этой группы не регламентируется, он только указывается в сертификатах завода-изготовителя. Стали этой группы обычно используются в изделиях в состоянии поставки без обработки давлением и сварки.

Группа Б поставляется только с гарантируемым химическим составом. Чем больше цифра условного номера стали, тем выше содержание углерода. Эти стали в дальнейшем могут подвергаться деформации (ковке, штамповке и др.), а в отдельных случаях и термической обработке. При этом их первоначальная структура и механические свойства не сохраняются.

Стали группы В могут подвергаться сварке. Их поставляют с гарантированным химическим составом и гарантированными свойствами. Эта сталь имеет механические свойства, соответствующие ее номеру по группе А, а химический состав -- номеру по группе Б с коррекцией по способу раскисления.

Качественные углеродистые стали - этот класс углеродистых сталей изготавливается по ГОСТ 1050--74. Качественные стали поставляют и по химическому составу, и по механическим свойствам.. К ним предъявляются более жесткие требования по содержанию вредных примесей (серы не более 0,04 %, фосфора не более 0,035 %), неметаллических включений и газов, макро- и микроструктуры.

Качественные стали делят на две группы: с обычным содержанием марганца (до 0,8 %) и с повышенным содержанием (до 1,2 %). Марганец повышает прокаливаемость и прочностные свойства, но несколько снижает пластичность и вязкость стали.

Для изделий ответственного назначения применяют высококачественные стали с еще более низким содержанием серы и фосфора. Низкое содержание вредных примесей в высококачественных сталях дополнительно удорожает и усложняет их производство. Поэтому обычно высококачественными сталями бывают не углеродистые, а легированные стали. Углеродистые стали, содержащие 0,7--1,3 % С, используют для изготовления ударного и режущего инструмента.

По способу раскисления стали делят на три группы: кипящие (содержат до 0,05% кремния, раскисляются марганцем. Имеют резко выраженную химическую неоднородность в слитке), полуспокойные (содержат 0,05- 0,15% кремния, раскисляются марганцем и алюминием, выход годного продукта -90-95%), спокойные (содержат 0,15-0,35% кремния, раскисляются кремнием, марганцем и алюминием. Выход годного - около 85%, однако, металл имеет более плотную структуры и однородный химический состав.).

По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего (до 200 0 С) деформирования.

По структуре в равновесном состоянии стали, делятся на: 1) доэвтектоидные, имеющие в структуре феррит и перлит; 2) эвтектоидные, структура которых состоит из перлита; 3) заэвтектоидные, имеющие в структуре перлит и цементит вторичный.

По прочностным свойствам стали условно делят на три груп­пы: обычной прочности (s y < 29 кН/см 2); повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2); высокой прочности (s y ≥ 40 кН/см 2). Повышение прочности стали достигается легированием и терми­ческой обработкой.

Стали обычной прочности (s y < 29 кН/см 2). К этой группе отно­сят низкоуглеродистые стали (С235...С285) различной степени раскисления, поставляемые в горячекатаном состоянии. Обладая отно­сительно небольшой прочностью, эти стали очень пластичны: протяженность площадки текучести составляет 2,5 % и более, соотношения s y / s u 0,6...0,7. Хорошая свариваемость обес­печивается низким содержанием углерода (не более 0,22 %) и крем­ния. Коррозионная стойкость - средняя, поэтому конструкции, вы­полненные из сталей обычной прочности, следует защищать с по­мощью лакокрасочных и других покрытий. Однако благодаря невысокой стоимости и хорошим технологическим свойствам стали обычной прочности очень широко применяют для строительных ме­таллических конструкций. Потребление этих сталей составляет свы­ше 50% от общего объема. Недостатком низкоуглеродистых сталей является склонность к хрупкому разрушению при низких температу­рах (особенно для кипящей стали С235), поэтому их применение в конструкциях, эксплуатирующихся при низких отрицательных тем­пературах, ограничено.

Стали повышенной прочности (29 кН/см 2 ≤ s y < 40 кН/см 2). Ста­ли повышенной прочности (С345...С390) получают либо введением при выплавке стали легирующих добавок (в основном марганца и кремния, реже никеля и хрома), либо термоупрочнением низкоуглеродистой стали (С345Т). Пластичность стали при этом несколько снижается и протяженность площадки текучести уменьшается до 1...1,5%.

Стали повышенной прочности хуже свариваются (особенно стали с высоким содержанием кремния) и требуют иногда использования специальных технологических мероприятий для пре­дотвращения образования горячих трещин.

По коррозионной стойкости большинство сталей этой группы близки к малоуглеродистым сталям. Более высокой коррозионной стойкостью обладают стали с повышенным содержанием меди (С345Д, С375Д, С390Д).

Высокое значение ударной вязкости сохраняется при температу­ре -40°С и ниже, что позволяет использовать эти стали для конст­рукций, эксплуатируемых в северных районах. За счет более высоких прочностных свойств применение сталей повышенной прочности приводит к экономии металла до 20...25%.

Стали высокой прочности (s y ≥ 40 кН/см 2). Прокат из стали вы­сокой прочности (С440...С590) получают леги­рованием и термической обработкой. Для легирования используют нитридообразующие элементы, способствующие образованию мел­козернистой структуры.

Стали высокой прочности могут не иметь площадки текучести (при s y ≥ 50 кН/см 2), и их пластичность (относительное удлинение) снижается до 14% и ниже. Отношение s y / s u увеличивается до 0,8...0,9, что не позволяет учитывать при расчете конструкций из этих сталей пластические деформации.

Подбирая химический состав и режим термообработки, можно значительно повысить сопротивление хрупкому разрушению и обеспечить высокую ударную вязкость при температурах до - 70°С. Однако высокая прочность и низкая пластичность сталей требуют более мощного оборудования для резки, правки, сверления и других операций.

При сварке термообработанных сталей вследствие неравномер­ного нагрева и быстрого охлаждения в разных зонах сварного соеди­нения происходят различные структурные превращения. На одних участках образуются закалочные структуры, обладающие повышенной прочностью и хрупкостью (жесткие прослойки), на других ме­талл подвергается высокому отпуску и имеет пониженную прочность и высокую пластичность (мягкие прослойки).

Разупрочнение стали в околошовной зоне может достигать 5...30 %, что необходимо учитывать при проектировании сварных конструкций из термообработанных сталей. Эффект разупрочнения снижает введение в состав стали некоторых карбидообразующих элемен­тов (молибден, ванадий).

Применение сталей высокой прочности приводит к экономии металла до 25...30 % по сравнению с конструкциями из низкоуглеро­дистых сталей и особенно целесообразно в большепролетных и мощных конструкциях.

Атмосферостойкие стали. Для повышения коррозионной стойко­сти металлических конструкций применяют низколегированные ста­ли, содержащие в небольшом количестве (доли процента) такие эле­менты, как хром, никель и медь.

В конструкциях, подвергающихся атмосферным воздействиям, весьма эффективны стали с добавкой фосфора (например, сталь С345К). На поверхности таких сталей образуется тонкая оксидная пленка, обладающая достаточной прочностью и защищающая металл от развития коррозии. Однако свариваемость стали при наличии фосфора ухудшается. Кроме того, в прокате больших толщин металл обладает пониженной хладостойкостью, поэтому применение стали С345К рекомендуют при толщинах не более 10 мм.

В конструкциях, совмещающих несущие и ограждающие функ­ции (например, мембранные покрытия), широко используют тонко­листовой прокат. Для повышения долговечности таких конструкций целесообразно применение нержавеющей хромистой стали марки ОХ18Т1Ф2, не содержащей никеля. В больших толщинах прокат из хромистых сталей обладает повышенной хруп­костью, однако свойства тонколистового проката (особенно толщи­ной до 2 мм) позволяют применять его в конструкции при расчет­ных температурах до -40°С.

По химическому составу стали подразделяют на углеродистые и легированные.Углеродистые стали состоят из железа и углерода с некоторой добавкой кремния (или алюминия) и марганца. Прочие добавки (медь, хром и т.д.) специально не вво­дятся и могут попасть в сталь из руды.

Углерод , повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому для строительных металлических конструкций применяют только малоуглеродистые стали с содер­жанием углерода не более 0,22 %.

В состав легированных сталей помимо железа и углерода входят специальные добавки, улучшающие их качество. Поскольку боль­шинство добавок в той или иной степени ухудшают свариваемость стали, а также удорожают ее, в строительстве в основном применяют низколегированные стали с суммарным содержанием легирующих добавок не более 5 %.

В зависимости отвида поставки стали подразделяются на:

Горячека­таные;

Термообработанные (нормализованные или термически улучшенные).

В горячекатаном состоянии сталь далеко не всегда об­ладает оптимальным комплексом свойств. При нормализации из­мельчается структура стали, повышается ее однородность, увеличи­вается вязкость, однако существенного повышения прочности не происходит. Термическое улучшение (закалка в воде и высокотемпе­ратурный отпуск) позволяют получить стали высокой прочности, хорошо сопротивляющиеся хрупкому разрушению.

По степени раскисления стали могут быть кипящими , полуспокой­ными, спокойными.

Нераскисленные стали кипят при разливке вследствие выделения газов: такая сталь носит название кипящей и оказывается более за­соренной газами и менее однородной.

Степень раскисления обозначается буквами: кп - кипящая; сп - спокойная; пс - полуспокойная.

Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, ху­же сопротивляются хрупкому разрушению и старению.

Чтобы повысить качество низкоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %. Кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. Кроме того, при соединении с ки­слородом раскислители образуют силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образо­ванию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными . Спокойная сталь более однородна, лучше сва­ривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Ее применяют при изготовлении ответствен­ных конструкций, подвергающихся статическим и динамическим воздействиям.

Спокойные стали примерно на 12 % дороже кипящих, что несколько ограничивает их применение.

Полуспокойная сталь по качеству является промежуточной меж­ду кипящей и спокойной. Ее раскисляют меньшим количеством кремния – 0,05...0,15 % (редко алюминием). По стоимости полуспокойные стали также занимают промежуточное положение. Низколегированные стали поставляют в основном спо­койной (редко полуспокойной) модификации.

8.7. Нормирование сталей .

Основным стандартом, регла­ментирующим характеристики сталей для строительных металличе­ских конструкций, является ГОСТ 27772 - 88. Согласно ГОСТу, фа­сонный прокат изготовляют из сталей С235, С245, С255, С275, С285, С345, С345к, С375, для листового и универсального проката и гну­тых профилей используются также стали С390, С390К, С440 и С590К. Стали С345, С375, С390 и С440 могут поставляться с повы­шенным содержанием меди (для улучшения коррозионной стойко­сти) при этом к обозначению стали добавляют букву Д.

Буква С в наименовании означает сталь строительную, цифра показывает значе­ние предела текучести в МПа, буква К - вариант химического состава.

Прокат поставляют как в горячекатаном, так и в термообработанном состоянии. Выбор варианта химического состава и вида тер­мообработки определяется заводом. Например, листовой прокат стали С345 может изготовляться из стали с химическим составом С245 с термическим улучшением. В этом случае к обозначению стали добавляют букву Т, например С345Т;

В зависимости от температуры эксплуатации конструкций и сте­пени опасности хрупкого разрушения испытания на ударную вяз­кость для сталей С345 и С375 проводятся при разных температурах, поэтому они поставляются четырех категорий, а к обозначению ста­ли добавляют номер категории, например С345-1, С375-2.

Оценку свариваемости стали проводят по углеродному эквива­ленту (%):

где С, Mn, Si, Cr, Ni, Си, V и Р - массовая доля углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора, %.

Если С э < 0,4%, то сварка стали не вызывает затруднений, при 0,4%<Сэ<0,55% сварка возможна, но требует принятия специальных мер по предотвращению возникновения трещин. При Сэ > 0,55% опасность появления трещин резко возрастает.

Отличительной особенностью ГОСТ 27772 - 88 является использование для некоторых сталей (С275, С285, С375) статистических методов контроля, что гарантирует обеспеченность нормативных значений предела текучести и временного сопротивления.

Строительные металлические конструкции изготовляют также из сталей, поставляемых по ГОСТ 380 - 88* "Сталь углеродистая обык­новенного качества", ГОСТ 19281 - 89 " Прокат из стали повышен­ной прочности. Общие технические условия." и другим стандартам.

Различий между свойствами стали, имеющими одинаковый химический состав, но поставляемым по разным стандартам, нет. Разница в способах контроля и обозначениях. Так, по ГОСТ 380-88* в обозначении марки стали

указываются группа по­ставки, способ раскисления и категория.

При поставке по группе А завод гарантирует механические свойства, по группе Б - химический состав, по группе В - механические свойства и химический состав.

Для малоуглеродистых сталей в зависимости от вида испытаний на ударную вязкость установлено 6 категорий: категории 1 ,2 - испы­тания на ударную вязкость не проводят, 3 - проводят при t = +20°С, 4 - при -20°С, 5 - при -20°С и после механического старения, 6 - по­сле механического старения.

Все эти факторы указывают в марке стали. Так, например, ВСтЗпсб - это сталь 3, полуспокойная, с гарантией в пределах вели­чин, установленных стандартом для этой стали, механических харак­теристик, химического состава и ударной вязкости после механиче­ского старения. В строительстве в основном используют стали марок ВСтЗкп2, ВСтЗпсб и ВСтЗсп5, а также сталь с повышенным содер­жанием марганца ВСтЗГпс5.

Стали, поставляемые по разным стандартам, взаимозаменяемы. Так, сталь С235 соответствует стали ВСтЗкп2, сталь С245 - ВСтЗпсб, сталь С255 - ВСтЗсп5. Рекомендации по такой замене приведены в нормах проектирования.

По химическому составу сталь подразделяют на углеродистую и легированную. Углеродистые стали разделяют по содержанию углерода на:

· малоуглеродистые: менее 0,3 % углерода;

· среднеуглеродистые: 0,3-0,7 % углерода;

· -высокоуглеродистые: более 0,7 % углерода.

Легированные стали разделяют по общему содержанию легирующих элементов на:

· низколегированные: менее 2,5 %;

· среднелегированные: 2,5-10,0 %;

· высокоуглеродистые: более 10,0%.

Классификация стали по способу производства и качеству (содержанию вредных примесей) К вредным примесям в сталях относят серу S и фосфор P.

В зависимости от их содержания стали разделяют на:

· стали обыкновенного качества (рядовые): до 0,06% S, до 0,07% P;

· качественные стали: до 0,04% S, до 0,035% P;

· высококачественные стали: до 0,025% S, до 0,025% P;

· особовысококачественные стали: до 0,015% S, до 0,025% P.

· Сталь обыкновенного качества (или рядовая сталь) выплавляется чаще всего в больших мартеновских печах, конвертерах и разливается в сравнительно крупные слитки Способ изготовления во многом предопределяет состав, строение и свойства этой стали. Стали высококачественные выплавляются преимущественно в электропечах, Классификация стали по назначению

· Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, изно-состойкие стали.

· К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость.

· Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных

· Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки.

· Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях

· Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремни-ем, марганцем, хромом, вольфрамом, ванадием

· Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома


· Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.).

· Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные

· Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

· Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).

· Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах.

· Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

· Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

· Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Билет 26 Цветные металлы в чистом виде обычно применяются редко, чаще используют различные сплавы. Из числа сплавов цветных металлов в машиностроении наибольшее значение имеют легкие сплавы – алюминия, магния и титана, а также медь и ее сплавы, сплавы на основе никеля, сплавы для подшипников (баббиты), материалы для полупроводников и высокопрочные сплавы на основе тугоплавких металлов.

АЛЮМИНИЙ Для алюминия и его сплавов характерна большая удельная прочность, близкая к значениям для среднелегированных сталей. алюминий и его сплавы хорошо поддаются горячей и холодной деформациям, точечной сварке, а специальные сплавы можно сваривать плавлением и другими видами сварки. Чистый алюминий хорошо сопротивляется коррозии, так как на его поверхности образуется плотная пленка оксидов Al2O3. Добавки железа и кремния повышают прочность алюминия, но снижают пластичность и устойчивость против коррозии. Чистый алюминий применяется для кабелей и электропроводящих деталей, но в основ-ном алюминий используется для изготов-ления сплавов.

МАГНИЙ Малая плотность магния и его сплавов в сочетании с высокой удельной прочностью и рядом физико-химических свойств делает их ценными для применения в различных областях машиностроения: автомобильной, приборостроении, самолетостроении, космической, радиотехнике и других. В горячем состоянии магниевые сплавы хорошо поддаются различным видам обработки давлением – прессованию, ковке, прокатке.

ТИТАН Титан обладает высокими механическими свойствами, высокой удельной прочностью при комнатных и криогенных температурах, а также хорошей коррозионной стойкостью Механические свойства титана сильно зависят от содержания примесей. Так небольшие количества кислорода, азота и углерода повышают твердость и прочность, но при этом значительно уменьшаются пластичность и коррозионная стойкость, ухудшается свариваемость и штампуемость. Особенно вреден водород, который образует по границам зерен тонкие пла-стины гидридов, сильно охрупчивающих металл. Для особо ответственных деталей применяют наиболее чистый титан.

МЕДЬ Наиболее характерными свойствами чистой меди являются высокие значения электропроводности, теплопроводности и стойкость против атмосферной коррозии. В связи с высокой пластичностью чистая медь хорошо деформируется в горячем и холодном состояниях. В процессе холодной деформации медь наклепывается и упрочняется; восстановление пластичности достигается рекристаллизационным отжигом при 500…600ºС в восстановительной атмо-сфере, так как медь легко окисляется при нагреве. Чистая медь применяется для проводников электрического тока, различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов. Чистая медь имеет низкую прочность и жидкотекучесть, плохо обрабатывается резанием, поэтому более широкое применение нашли сплавы на ее основе. При сохранении высоких показателей электро- и теплопроводности коррозионной стойкости сплавы меди обладают хорошими механическими, технологическими и антифрикционными свойствами. Для легирования меди в основном применяют цинк, олово, алюминий, бериллий, кремний, марганец и никель. Повышая прочность сплавов, эти легирующие элементы практически не снижают пластичность, цинк, олово, алюминий даже увеличивают ее.

ЛАТУНЬ Латунями называют медноцинковые сплавы. При дополнительном введении в сплав добавок алюминия, свинца, олова, кремния и других элементов получают специальные латуни. Практическое применение находят латуни, содержание цинка в которых не превышает 49%. При более высокой концентрации цинка значительно ухудшается механические свойства сплава.

БРОНЗА Хуй знает че с этой бронзой, обозначается он буквами "Бр" вот и все, что можно объяснить доступным языком, а химические формулы и заумные слова тольео похоронят тебя на экзамене. Вот такие дела удачи)

Билет 35 Пластмассы

Пластмассы - искусственные материалы. Обязательным компонентом является связка. В качестве связки используются: синтетические смолы; эфиры, целлюлоза. Некоторые пластмассы состоят только из одной связки (полиэтилен, фторопласты, органическое стекло). Вторым компонентом является наполнитель (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения). Наполнители повышают механические свойства, снижают усадку при прессовании полуфабриката, придают материалу необходимые свойства. Для повышения эластичности и облегчения обработки в пластмассу добавляют пластификаторы (олеиновая кислота, стеарин, дибутилфторат...). Исходная композиция может содержать: отвердители (амины); катализаторы (перекиси) процесса отвердения; красители. Основой классификации пластмасс служит химический состав полимера: По характеру связующего вещества, различают термопластичные (термопласты) и термореактивные пластмассы. Термопласты получают на основе термопластичных полимеров. Они удобны для переработки (при нагревании пластифицируются), имеют низкую объемную усадку (не более 4%), отличаются большой упругостью, малой хрупкостью. Термореактивные пластмассы после отверждения и перехода в термостабильное состояние отличаются хрупкостью, могут дать усадку до 15%. Поэтому в состав этих пластмасс вводят усиливающие наполнители.

По виду наполнителя, различают пластмассы: порошковые (карболиты) - с наполнителем в виде древесной муки, графита, талька... Волокнистые - с наполнителем из: очесов хлопка и льна (волокниты); стеклянных нитей (стекловолокниты); асбеста (асбоволокниты). Слоистые - с листовым наполнителем: бумажные листы (гетинакс); хлопчатобумажные ткани, стеклоткани, асбестовые ткани (текстолит, стеклотекстолит, асботекстолит). Г азонаполненные - с воздушным наполнителем (пенопласты, поропласты). Особенностями пластмасс являются: малая плотность; низкая теплопроводность; большое тепловое расширение; хорошие электроизоляционные свойства; высокая химическая стойкость; хорошие технологические свойства

Билет 27 Паянием называют процесс, жесткого соединения металлических деталей путем расплавления присадочного материала припоя, имеющего температуру плавления более низкую, чем температура плавления основного металла. Соединение с помощью припоя основано на взаимном растворении и диффузии основного металла и припоя. Такой процесс протекает наиболее благоприятно, если основной металл и припой имеют химическое и физическое сродство. Прочность соединения припоем зависит от величины поверхностей, соединяемых пайкой, чистоты этих поверхностей, зазора между дета-лями, структуры образовавшегося паечного шва, а затем и устойчивости к коррозии основного сплава и припоя.Уменьшение линейных размеров изделия особенно заметно при соединении нескольких деталей, когда суммарная усадка припоя в паечных швах может достигать размеров, при которых конструкция оказывается заметно укороченной и часто непригодной. Поверхность металлов, соединяемых пайкой, необходимо тщательно очистить от окислов и загрязнений, препятствующих процессу диффузии и растворению металлов. Флюс . Он защищает спаиваемые поверхности и очищает их от окислов, препятствующих диффузии припоя в основной металл. Спаиваемый металл с припоем может давать,различные виды соединений: твердый раствор, химическое соединение, механическая смесь. Лучшим видом спайки является такая, при которой формируется структура припоя типа твердого раствора. Она происходит между металлами, обладающими наибольшим физико-химическим сродством. Примером может быть паяние меди латунью, золота- золотыми припоями. Структуры типа химического соединения (паяние меди оловом) и механической смеси (паяние стали золотом) не обеспечивают высокой прочности и антикоррозийной устойчивости.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПЙКИ

1) Подготовка поверхности (очистка от жиров и прочей хуетни)

2)Выравнивание (подгонка по поверхности)

3)Защита места пайки флюсом.

4) Лужение (покрытие тонким слоем частей спаиваемых)

5) Прогревание до плавления

6) Фиксация

7) Охлаждение

8) Очистка пайного шва от излишковприпоя флюса и др.

Твердая плавка(медь железо) очень близки к латунным Для пайки твердого припоя с температурой плавления 1000градусов используют гранники (пояльники с открытым пламенем) Флюсы применяют на основе борной кислоты и ее соли

Билет 28 28 . Мартеновский способ производства стали

Мартеновское производство возникло в 1864 г., когда П.Мартен построил первую регенеративную (использующую теплоту отходящих газов) печь, давшую годную литую сталь из твердой шихты. В России первая мартеновская печь была построена в 1869 г. А.А.Износковым на Сормовском заводе. Вплоть до 90-х годов мартеновские печи использовались для производства стали лишь с завалкой твердой шихты и работали по так называемому скрап-процессу. Разработка технологии рудного процесса на жидком чугуне была осуществлена в Украине братьями А.М. и Ю.М.Горяиновыми; они же внедрили плавку по этой технологии в 1894 г. на Александровском заводе в Екатеринославле (ныне Днепропетровский завод им. Г. И. Петровского). В мартеновской печи осуществляется передел загруженной в нее шихты: твердого или жидкого чугуна, стального и чугунного лома с использованием железной руды, окалины, кислорода, флюсов и ферросплавов - в сталь заданного состава, при этом получается побочный продукт плавки - мартеновский шлак. Мартеновская печь

Верхняя часть мартеновской печи (рис. 1) состоит из рабочего пространства (ограниченного ванной4, передней стеной 9, задней стеной 8, сводом 5) и головок, расположенных с обоих концов рабочего пространства. В передней стене находятся загрузочные окна 6, через которые с рабочей площадки загружается шихта, берутся пробы и ведется наблюдение за плавкой. Подина печи имеет наклон к задней стене, в которой находится отверстие для выпуска готовой стали, разделываемое перед выпуском. Через каналы 1, 2, 3 и 7 головок подается газ (топливо) и окислительное дутье и отводятся продукты горения. Нижняя часть печи состоит из двух пар шлаковиков, двух пар регенераторов, подземных каналов с перекидными клапанами и дымового борова, соединенного с дымовой трубой или котлом - утилизатором. Шлаковики и регенераторы расположены попарно и симметрично по обе стороны печи. Сечение через воздушный шлаковик 11 и газовый шлаковик 10 сделано в одной плоскости с сечением рабочего пространства, а сечение через воздушный регенератор 12 и газовый регенератор 13 - в другой плоскости: шлаковики находятся под головками, а регенераторы под рабочей площадкой. Регенераторы служат для нагрева воздуха и горючего газа, поступающих в рабочее пространство при температуре 1000-1150°. Необходимость нагрева вызвана тем, что в рабочем пространстве должна быть обеспечена температура до 1700° и более, если же предварительного нагрева дутья и газа не производить, то температура в печи будет недостаточна для нагрева и последующего плавления мягкой стали. Камеры регенераторов заполнены насадкой в виде решетчатой кладки из огнеупорного кирпича. Регенераторы работают попарно и попеременно: в то время как одна пара нагревает дутье и газ, другая аккумулирует (запасает) теплоту отходящих продуктов горения; по охлаждении регенераторов до нижнего предела либо по достижении верхнего предела нагрева регенераторов, аккумулирующих теплоту, происходит перемена направления движения газов посредством перекидки клапанов. Шлаковики расположены между головками и регенераторами; они служат для собирания пыли и капель шлака, которые выносятся продуктами горения. Для нагрева мартеновских печей, работающих на машиностроительных заводах, применяется также жидкое топливо (мазут). Мазут в рабочее пространство вводится с помощью форсунки и распыляется струей воздуха или пара под давлением 5-8ати. Печи, работающие на мазуте, оборудуются только двумя регенераторами (и соответственно двумя шлаковиками) для подогрева окислительного дутья по одному с каждой стороны. Мартеновские процессы и печи разделяют на основные и кислые в зависимости от характера процесса и, соответственно, материала футеровки подины и стен. Плавка стали на шихте, содержащей фосфор и серу в количестве, превышающем допустимое в готовой стали, производится основным процессом, т.е. под основным шлаком и в печах с основной футеровкой. Ванна основных печей футеруется обожженным доломитом или магнезитом. Для кладки свода рабочего пространства, головок и стен шлаковиков применяют магнезитохромитовый кирпич, имеющий высокую стойкость. В небольших печах, а также при отсутствии магнезитохромитового кирпича, свод печей делается из динасового кирпича. Для плавки стали под кислым шлаком применяются кислые печи с футеровкой из динасового кирпича и кварцевого песка. Помимо стационарных мартеновских печей, применяются также качающиеся мартеновские печи. Верхняя часть качающейся печи опирается на систему роликов. Между торцовыми стенками рабочего пространства и головками имеются небольшие щели, обеспечивающие возможность поворота корпуса печи. Посредством поворотного механизма осуществляется наклон до 15° в сторону рабочей площадки для скачивания шлака, или на 30-33° в сторону выпускного отверстия для выпуска стали. Продолжительность службы мартеновской печи (ее кампания) определяется числом плавок, выдерживаемых сводом рабочего пространства; она составляет обычно для печей с динасовым сводом 250- 300 плавок (при большой емкости) или 400-500 плавок (при малой и средней емкости), а для печей с хромомагнезитовым сводом 700 и более плавок. В мартеновских печах выплавляют углеродистую конструкционную сталь, а также легированную сталь различных марок.

Новое на сайте

>

Самое популярное